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Abstract 

In this paper, a new approach for handling fuzzy AHP is introduced, with the use of triangular fuzzy numbers for 
pairwise comprison scale of fuzzy AHP, and the use of the extent analysis method for the synthetic extent value S i of the 
pairwise comparison. By applying the principle of the comparison of fuzzy numbers, that is, V ( M  l >1 M 2) = 1 iff mj >i 
m z, V ( M  z >/M~) = hgt(M~ A M z) =/xM,(d), the vectors of weight with respect to each element under a certain criterion are 
represented by d( A i) = min V(S i >1 Sk), k = 1, 2 . . . . .  n; k -4= i. This decision process is demonstrated by an example. 
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1. Introduction 

Many scholars have engaged in the fuzzy exten- 
sion of Saaty's priority theory. Since the publication 
of Saaty's The Analy t ic  Hierarchy  Process  (for short 
AHP), Netherlands's scholars van Laarhoven and 
Pedrycg [3] proposed a method, where the fuzzy 
comparing judgment is represented by triangular 
fuzzy numbers. They used fuzzy numbers with trian- 
gular membership function and simple operation 
laws. According to the method of logarithmic least 
squares (for short LLMS), the priority vectors were 
obtained. 

In this paper, a new approach to handling fuzzy 
AHP is given, which is different from the above- 
mentioned methods. But the ordering of a permuta- 
tion with respect to elements is quite the same. First 
of all, triangular fuzzy numbers are used for a pair- 
wise comparison scale of fuzzy AHP. Then, by using 
the extent analysis method [1], the synthetic extent 
value S i of the pairwise comparison is introduced, 

and by applying the principle of the comparison of 
fuzzy numbers [ 1 ], 

V(  MI >~ M2)  = I i f f  ml >~ m 2 

and 

V( M 2 >_- M, ) = hgt( M I N M 2) =/zM, ( d ) ,  

the weight vectors with respect to each element 
under a certain criterion can be represented by 

d ( a i ) = m i n V ( S i > ~ S k ) ,  k = l  . . . . .  n,  k 4 : i .  

Finally, an example is given to explain this decision 
process. 

2. Basic concept of  fuzzy AHP 

2.1. Triangular  f u z zy  numbers  

Definition 1. Let M E F(R)  be called a fuzzy num- 
ber if: 
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1) exists x 0 ~ R  such that / , ,~M(Xo) ~-- 1. 
2) For any a ~ [0, 1], 

A a = [ x , / x A ~  (x)>la] 
is a closed interval.Here F(R) represents all fuzzy 
sets, and R is the set of  real numbers. 

Definition 2. We define a fuzzy number M on R to 
be a triangular fuzzy number if its membership 
function /XM(X): R ~ [0, 1] is equal to 

m - l  m - l "  x ~ [ l , m ] ,  
/XM(X ) = u (1)  

- -  , x [m, u ] ,  
m U m - - u  

O, otherwise, ) 

where t ~< m ~ u, 1 and u stand for the lower and 
upper value of the support of  M respectively, and m 
for the modal value. The triangular fuzzy number 
can be denoted by (l, m, u). The support of  M is the 
set of  elements { x ~ R [ l < x < u}. When l = m = u, 
it is a nonfuzzy number  by convention. 

Consider two triangular fuzzy numbers M~ and 
M2, M, = ( l  I, m l ,  U l )  and M 2 = (12, m 2 ,  u2) .  Their 
operational laws are as follows: 

1. (1, ,  m l, u , )  • (12, m2, u2) 

= ( l ,  +12 ,  m, + m  2, u, + u 2 ) .  (2)  

2. (1 l, m, ,  u , ) Q ) ( l  2, m 2, u2) 

(1112, mlm2, utu2) .  (3)  

3. (A,  A, A) Q ( I , ,  m, ,  u , ) = ( A t , ,  Aml, AUl), 

A > 0 ,  A ~ R .  (4)  

4. (1,, m,, u,)- '  = ( l /u , ,  l /m, ,  l / l , ) .  (5)  

where all the M j ( j =  1, 2, ,m)  are triangular 
gi  " ' "  

fuzzy numbers. 

l 2 M m be values of  Definition 3. L e t  Mg, ,  Mg , ,  . . . .  g, 

extent analysis of ith object for m goals. Then the 
value of fuzzy synthetic extent with respect to the 
i-th object is defined as [1] 

Si= ~ M~ O M~ . (7)  
j= l  i j= l  

3. Presentation method of  fuzzy numbers  for the 
pairwise comparison scale 

The first task of the fuzzy AHP method is to 
decide on the relative importance of  each pair of  
factors in the same hierarchy. By using triangular 
fuzzy numbers, via pairwise comparison, the fuzzy 
evaluation matrix A = (a;j)n×,,  is constructed. For 
example,  essential or strong importance of  element i 
over element j under a certain criterion: then aij = 
(l, 5, u), where l and u represent a fuzzy degree of 
judgment. The greater u - 1, the fuzzier the degree; 
when u - l = 0, the judgment  is a nonfuzzy number. 
This stays the same to scale 5 under general mean- 
ing. I f  strong importance of element j over element i 
holds, then the pairwise comparison scale can be 
represented by the fuzzy number 

a~ l= ( l /u ,  l /m,  l / I ) .  

4. Calculation of  priority vectors o f  the fuzzy 
AHP 

2.2. Value of fuzzy synthetic extent 

Let X={xj ,  x 2 . . . .  x,} be an object set, and 
U = {u~, u 2 . . . . .  u m} be a goal set. According to the 
method of extent analysis [1], we now take each 
object and perform extent analysis for each goal 
respectively. Therefore, we can get m extent analysis 
values for each object, with the following signs: 

1 2 " i = 1 2 . . . . .  n, (6 )  Mg,, Mg,, . . . .  M g , ,  

Let A = (a i j ) ,×  m be a fuzzy pairwise comparison 
matrix, where aij = (lij, mij, uij), which are satis- 
fied with 

1 1 1 
liy l j  i m i j  = , u U = ~ .  

mj i  uj i  

To obtain the estimates for the vectors of  weights 
under each criterion, we need to consider a principle 
of  comparison for fuzzy numbers. In fact, two ques- 
tions may arise. 
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1) What is the fuzzy value of the least or greatest 
number from a family of fuzzy numbers? 

2) Which is the greatest or the least among sev- 
eral fuzzy numbers? 

The answer to the first question is given by the 
use of the operation max and rain [2]. However, the 
answer to the second question requires efforts. We 
must evaluate the degree of possibility for x ~ R 
fuzzily restricted to belong to M, to be greater than 
y ~ R fuzzily restricted to belong to M. Thus, we 
give the definition as follows: 

Definition 4. The degree of possibility of MI >i M 2 
is defined as 

V( M, >/M2) = sup [rain(/XM, (X),  /XM: ( y ) ) ] .  
x>~ y 

(8) 
When a pair (x,  y) exists such that x >/y and 

/xM(x) =/Zm:(y) = 1, then we have V ( M  l >1 M 2) = 
1. Since M~ and M 2 are convex fuzzy numbers we 
have that 

V ( M  I > ~ M e ) =  1 iffm I>~m 2, 

V ( M z > ~ M , )  = h g t ( M ,  riM2) = ~M,(d), (9) 

where d is the ordinate of the highest intersection 
point D between /XM, and ~ M  2 (see Fig. l). 

When M I = ( l l ,  rnl, Ul) and M 2 = ( l  2, m z, u2), 
the ordinate of D is give by Eq. (10). 

V( M 2 >j MI) = hgt( M, f3 M2) 

I) - u 2 

= ( m 2 -  u2) - (ml - l l ) "  (10) 

To compare Mt and M 2, we need both the values of 
V ( M  I >1 M 2) and V ( M  2 >1 MI). 

11 ................ , 
V(Me~M~) ] . . . ~  "" 

0 1 e ra z l~d uem I u I 
Fig. 1. 

Table 1 
The matrix J~', pairwise comparison of performance criteria 

Ci C2 C3 Ca 

C, (1, 1, 1) (~, 1, 3) ('~, l, 3) (~, ~, ~*) 
1 2 I 2 

(~, 7, 9 (~, :r, Y) 
I 2 (3,2, ~) (~, 7, ~) 

C 2 (~,I,  ~) (I,1, I) (~,3, ½) 
(~,2, ~) (~,3, ~) 

. 7 ,  ~) 

c, (Ll,  3) (~, ~, ~) ( i , i , i )  
g, g) 

3 5 C 4 (~,3, {) (~,1, 3) (7, 2, 7) 
(~,3, ½) (~,1, ~) 

(},1, 3) 
(},1, }) 
(~,2, ~) 

( ~ ,  1 2 
7. Y) 

(1, t, 1) 

Def init ion 5. The degree possibility for a convex 
fuzzy number to be greater than k convex fuzzy 
numbers M i (i = 1, 2 . . . . .  k) can be defined by 

V ( M > ~ M  1 , M 2 . . . . .  Mk) 

= V [ (  M>~ M, )  and ( M>~ M2) 

and ..-and(M>~ Mk)] 
= m i n V ( M > ~ M i ) ,  i = l , 2  . . . . .  k. ( l l )  

Assume that 

d ( A i )  -- min V( S i >1 Sk),  (12) 

for k = 1, 2 . . . . .  n; k ~ i. Then the weight vector is 
given by 

W ' =  ( d ' ( A , ) ,  d ' ( a 2 )  . . . . .  d ' ( a ~ ) )  v, (13) 

where A i (i = 1, 2 . . . . .  n) are n elements. 
Via normalization, we get the normalized weight 

vectors 

W =  ( d ( A  I), d(A2) . . . . .  d ( A , ) )  T. (14) 

where W is a nonfuzzy number. 

5. Appl icat ion of  fuzzy A H P  in group decis ions 

The following example is a modification of the 
problem originally presented by van Laarhoven [2]. 
Suppose that at a university the post of a professor in 
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Table 2 
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C 1 

C l (1, 1, 1) 
C 2 (0.64, 0.85, 1.16) 
C3 (0.87, 1, 1.49) 
C a (2.04, 2.56, 3.03) 

C2 C 3 C 4 W C 
(0.86, 1.17, 1.56) (0.67, 1, 1.5) (0.33, 0.39, 0.49) 0.13 
(1, 1, 1) (2.5, 3, 3.5) (0.95, 1.33, 1.83) 0.41 
(0.29, 0.33, 0.40) (1, 1, 1) (0.4, 0.5, 0.67) 0.03 
(0.55, 0.75, 1.05) (1.49, 2, 2.5) (1, 1, 1) 0.43 

Operations Research is vacant, and three serious 
candidates remain. We shall call them A~, A 2 and 
A 3. A committee has convened to decide which 
applicant is best qualified for the job. The committee 
has three members  and they have identified the 
following decision criteria: 

1) mathematical creativity (C I); 
2) creativity implementations (C2); 
3) administrative capabilities (C3); 
4) human maturity (Ca). 

First step. Via pairwise comparison, the fuzzy 
evaluation matrix oq2', which is relevant to the objec- 
tive, is constructed (see Table 1). 

By using formula (2) and taking the average 
value, we obtain Table 2. 

Then, by applying formula (7), we have 

1 1 1 
S l = (2.86,  3.56, 4.55)(3 2 3 . 1 8 '  18 .88 '  15.59 

= (0.12,  0.19, 0 .29) ,  

1 1 1 
S 2 = (5.09,  6.18, 7.49)(3 2 3 . 1 8 '  18 .88 '  15.59 

= (0.22,  0.32, 0 .48) ,  

= (2.56,  2.83 3 .56) (3 /  1 1 1 $3 ' ~ 2 3 . 1 8 '  18 .88 '  15.59 

= ( 0 . 1 1 , 0 . 1 5 ,  0 .23) ,  

Table 3a 
The matrix '~1 

Cl Al A2 A 3 

g I (l ,  1, l) (2, 1, 3) (2, 1, ~) 

(2, ~, ~) (2, ", 2) 

A2 (2, 1, 3) (1, 1, 1) (~, ½, 2) 
(2, L 3) 

A3 (2, 1, 3) (2, 2, -~) (1, 1, l) 
(2, 2, -) 

$ 4 = ( 5 . 0 8  , 6 . 3 1 , 7 . 5 8 ) ( 3 (  1 1 1 ) 
! , 23 .18 '  18 .88 '  15.59 

-- ( 0 .21 ,0 .33 ,  0 .49) .  

Using formulas (9) and (10), 

V( SI ~ $ 2 )  

0.22 - 0.29 
= = 0.35, 

(0.19 - 0.29) - (0.32 - 0.22) 

V( S 1 >j 83) = 1, 

0.21 - 0.29 
V( S 1 ~ 54)  = 

(0.19 - 0.29) - (0.33 - 0.21) 

= 0.32, 

= 1 V($2>~$3) = 1, v(  s2 >1 s~) 

v(  s 2 ~ 54) 
0.21 - 0.48 

= = 0.96, 
(0.32 - 0.48) - (0.33 - 0.21) 

V( S 3 >~ S~ ) = 0.73, 

V( S 3 >~ S 2 ) = 0.06, 

V ( S  3 ~ 54) = O. lO,  

V ( S 4 ~ S l )  = 1, 

V( S 4 ~ 52) = 1, 

V( 54 ~ S3) = 1. 

Finally, by using formula (12), we obtain 

d t ( C l )  = V( S 1 >1 S2, S3, S4) 

= min(0.35,  1 ,0 .32)  = 0.32, 

Table 3b 
The matrix ,-~'2 

C2 AI A 2 A3 

A, (1, 1, l) @3,  ~-) (~,2, ~) 
A 2 ('~, "~, {) (1, 1, 1) - 

I 2 A3 (~, ~, ~) (1, 1, 1) 
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Table 3c 
The matrix -~3 

C 3 A I A2 A 3 

A, (I, I, l) (~,3, ~) 
q,  3, -~) 
(½, 2, ~) 

A2 (2, ~, 2) (1, 1, 1) 

(÷, ~, ~) 

Table 3d 
The matrix ~ 4  

C4 At A 2 A 3 

(-~,3, ½) A, (1, 1, l) - 

q,  1, ~) 
A 2 - (1, I, I) 

, _2 )  2 ~ :_.) 

(3, 2, -~) 

A 3 (2, ~, 2) (2, 1, 3) (1, 1, l)  

q,  2, ~) 

(~, 2, ~) 

(1, 1, 1) 

d'( C2) = V( S2 >1 s,, s~, s , )  

= min(1,  1 ,0 .96)  = 0.96, 

d ' (C3)  = V( S 3 >~ S~, S 2, S4) 

min(0.73,  0.06, 0 . 1 0 ) = 0 . 0 6 ,  

d ' ( C 4 )  ~-~ V( S 4 ~ S 1, S 2, S3)  

= m i n ( 1 ,  1, 1) = 1. 

Therefore, 

W' = (0.32, 0.96, 0.06, 1) T 

via normalization, and we have obtained the weight 
vectors with respect to the decision criteria CI, C 2, 

C 3 and C4: 

W =  (0.13,  0 .41 ,0 .03 ,  0.43) T. 

Second step. At the second level of  the decision 
procedure, the committee compares candidates A l, 
A 2 and A 3 under each of  the criteria separately. This 
results in the matrices ,9~ l , ,9~ 2, ,-~3 and ~/~4, which 
are shown in Tables 3a ' -3d ' .  

In Table 3b, there are two elements such that 
l j -  u 2 > 0, and in this case, the elements of  the 
matrix must be take normalized. 

Table 3a' 

Ci A 1 A 2 A 3 Wc, 

A~ (1, 1, 1) (0.67, 1, 1.5) (0.54, 0.75, 1.1) 0.28 
A 2 (0.67, I, 1.5) (1, 1, 1) (0.4, 0.5, 0.6) 0.21 
A 3 (0.91, 1.33, 1.85) (1.5, 2, 2.5) (1, 1, 1) 0.51 

Table 3b' 

C2 Al A 2 A 3 Wc2 

A~ (0.33, 0.33, 0.34) (0.28, 0.33, 0.39) (0.25, 0.33, 0.42) 0.66 
A 2 (0.29, 0.33, 0.4) (0.33, 0.33, 0.34) - 0.16 
A 3 (0.24, 0.32, 0.43) - (0.33, 0.33, 0.34) 0.19 

Table 3c' 

C3 At A 2 m 3 Wcs 

A I (0.33, 0.33, 0.34) (0.27, 0.33, 0.40) (0.28, 0.33, 0.39) 0.35 
A 2 (0.29, 0.32, 0.4) (0.33, 0.33, 0.34) (0.21, 0.32, 0.47) 0.33 
A s (0.28, 0.32, 0.39) (0.21, 0.32, 0.47) (0.33, 0.33, 0.34) 0.32 
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C 4 A~ 

A I (1, 1, 1) 

A 2 
A 3 (0.95, 1.25, 1.59) 

A2 WA 3 Wc 4 

- (0.95, 1.25, 1.59) 0.22 
(1, l, l)  (1.5, 2, 2.5) 0.42 
(0.4, 0.5, 0.67) ( l ,  1, l) 0.36 

As before, these matrices are used to estimate 
weights, in this case the weights of each candidate 
under each criterion separately. The results are given 
in Table 4. 

Finally, adding the weights per candidate multi- 
plied by the weights of the corresponding criteria, a 
final score is obtained for each candidate. Table 5 
shows these scores. 

The ordering relation between the candidates is 
exactly the same as in [3]. According to the final 
scores, it is clear that candidate A~ is the preferred 
candidate. 

6. Comparison of  the extent analysis method and 
LLSM 

According to the complexity of the algorithm, we 
can distinguish between good and bad points of 
EAM and LLSM. The time complexity and the space 
complexity is contained in the complexity of the 
algorithm. 

By time complexity we are refering to the time in 
which the algorithm was accomplished. We only use 
the number of times of multiplication, which are 
more or less as a criterion of appraisal. In this paper, 
we consider time complexity only. 

Assume that we give an n x n fuzzy pairwise 
comparison matrix, by using the EAM and LLSM. 
The weight vectors with respect to each element 
under certain criterion will then be obtained. Via 
normalization we get the normalized weight vectors. 

Table 4 

Criterion A ~ A 2 A 3 

C I 0.28 0.21 0.51 
C 2 0.66 0.16 0.19 
C 3 0.35 0.33 0.32 
C 4 0.22 0.42 0.36 

Let us to count the number of times of multiplica- 
tion with respect to the two methods, respectively. 

Formulas (7), (10) and (14) are major formulas of 
EAM. In formula (7), to count S i ( i  = 1, 2 . . . . .  n), 

we need to use multiplication 6n times. In formula 
(10), via pairwise comparison of S~, S 2 . . . . .  S,, the 
number of times of multiplication is 

p 2 = n ( n - 1 ) .  

Finally, in formula (14), we also need to use multi- 
plication n times. 

Therefore, the time complexity of EAM is 

T , = 6 n + n ( n - 1 ) + n = n ( n + 6 ) .  (15) 

In the LLSM, the normalized weight vectors are 

wk= L [  n ] , / , , ,  k = l , 2  . . . . .  n, (16) 

i=ltj~l aij; 
where w k is the k-th component of the weights 
vector. Evidently, the time complexity of LLSM is 

T ' = n [ ( n +  l )  + n ( n +  l )  +1 ]  

= n ( n + l ) 2 + n .  (17) 

Thus 

T" - T, = n(  n 2 + n - 4). (18) 

Let n = 4, we obtain T~ = 104, T 4 = 40, T~ - T 4 
= 64. 

Evidently, the EAM is better than the LLSM at 
time complexity. 

Table 5 

Ai A 2 A3 

Final scores 0.41 0.28 0.25 
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